УДК: 581:633

Скрещиваемость и фертильность гибридов между формами пшеницы – носителями субгенома *G* и сортами мягкой и твёрдой пшениц Е.В.Твердохлеб

Институт растениеводства имени В.Я.Юрьева УААН (Харьков, Украина) etverd@meta.ua

Виды и формы — носители субгенома G трудно скрещиваются с сортом мягкой пшеницы Героиня и твёрдой — Спадщина. Успех скрещиваний выше, когда материнской формой являются формы — носители субгенома G. Показатели завязываемости в первичных скрещиваниях значительно выше, чем при беккроссах. Добавление к базовому геному T. timopheevii дополнительных геномов A^b , D и U в целом уменьшает завязываемость. Однако зерновки, полученные при беккроссах, имеют хорошую всхожесть, за исключением реципрокных комбинаций T. $militinae \times Fepouhs$. Скрещивания сортов мягкой и твёрдой пшеницы с октаплоидными формами T. x timoglicidum и timogli

Ключевые слова: пшеница, Triticum timopheevii, амфидиплоиды, геномы, отдалённая гибридизация, скрещиваемость, фертильность.

Схрещуваність та фертильність гібридів між формами пшениці— носіями субгеному *G* та сортами м'якої та твердої пшениць О.В.Твердохліб

Ключові слова: пшениця, Triticum timopheevii, амфідиплоїди, геноми, віддалена гібридизація, схрещуваність, фертильність.

Crossability and fertility of hybrids between wheat forms carrying subgenome G and varieties of bread and durum wheat E.V.Tverdokhleb

Species and forms – carriers of G subgenome are difficult to hybridize with the varieties of bread wheat Heroinya and durum wheat Spadshchyna. The success of crosses is better, when the maternal form is a carrier of G subgenome. The seed set in the initial crosses is significantly higher than in backcrosses. Addition to the basal genome T. timopheevii of the additional genomes A^b , D, and D generally decreases the seed set. However grains obtained by backcrosses have good germination, except for the reciprocal combinations T. $militinae \times T$. $militinae \times T$.

Key words: wheat, Triticum timopheevii, amphidiploids, genomes, wide hybridization, crossability, fertility.

Введение

Пшеница Тимофеева (*Triticum timopheevii* Zhuk.) широко используется в селекционных программах, как генетический источник иммунитета к болезням, высокого содержания белка в зерне, устойчивости к избыточному увлажнению и других полезных свойств. Такие качества T. timopheevii в значительной степени обусловлены присутствием в его геноме субгенома G, происходящего, предположительно, от Aegilops speltoides Tausch, у которого он обозначается как S (Kihara, 1963). Этот вид эгилопса, как считает большинство исследователей, явился и донором цитоплазмы T. timopheevii, использованной в своё время как фактор ЦМС в селекции гибридной пшеницы. Кроме T. timopheevii субгеном G и соответствующую цитоплазму несут естественные виды — дикий T.

araraticum Jakubz. и культурные *T. militinae* Zhuk et Migusch. и *T. zhukovskyi* Menabde et Eritzjan (Panayotov, Gotsov, 1976).

Однако передача ценных генов от этих форм мягкой и твердой пшенице затруднена генетической несовместимостью, которая проявляется в плохой скрещиваемости, низкой жизнеспособности гибридных растений, стерильности первого и последующих поколений. В качестве одного из путей облегчения переноса генов предполагалось создание на основе *Т. timopheevii* искусственных амфидиплоидов и интрогрессивных форм, которые обладают также ценными признаками, контролируемыми другими субгеномами (Цитогенетика пшеницы ..., 1971; Генетика культурных растений ..., 1986). Предполагалось, что они могут послужить «мостиками» для переноса ценных генов. Однако и этот путь не дал кардинального решения проблемы, о чем свидетельствует очень малое количество сортов мягкой и твердой пшеницы, созданных с использованием носителей субгенома *G*.

Определенный успех достигнут при использовании *T. х miguschovae* – амфидиплоида *T. militinae x Ae. tauschii* Coss, с участием которого созданы сорта озимой мягкой пшеницы Ростислав, Восторг, Жировка, Фишт, Евгения.

В литературе достаточно освещён вопрос скрещиваемости *T. timopheevii* с мягкой и твёрдой пшеницами. Вместе с тем мало данных о скрещиваемости искусственных амфидиплоидов, созданных на основе *Т. timopheevii*, с мягкой и твёрдой пшеницами и о плодовитости последующих поколений. В связи с этим **целью** нашей работы было установить способность полиплоидных форм — носителей субгенома *G* продуцировать фертильное потомство при гибридизации с сортами мягкой и твёрдой пшениц. Иными словами, ставилась цель оценить, как добавление различных субгеномов к геному *Т. timopheevii* повлияло на возможность осуществлять интрогрессивную гибридизацию с сортами мягкой и твёрдой пшениц.

Материалы и методы

Материалом для исследований были представители подрода *Boeoticum* из коллекции Национального банка генетических ресурсов растений Украины: *T. timopheevii* (IR00158, Грузия) — базовый вид, геномная формула A^bA^bGG , 2n=28; *T. x timococcum* (UA0500025, Болгария, $A^bA^bA^mA^mGG$; 2n=42); формы из Японии, Университета г. Киото: *T. x kiharae* (UA0500014, A^bA^bGGDD , 2n=42) и амфидиплоид АД-217 (UA0500017, A^bA^bGGUU , 2n=42); *T. x fungicidum* (UA0500020, $A^bA^bA^uA^uBBGG$, 2n=56); *T. militinae* (UA0300257, $A^bA^bG^mG^m$, 2n=28), *T. x miguschovae* (UA0500015) и амфидиплоид Е.Г.Жирова (UA0500016, геномная формула $A^bA^bG^mG^mDD$, 2n=42); *T. x flaksbergeri* (UA0500056, $A^bA^bA^uA^uBBG^mG^m$, 2n=56); представители видов и сортов подрода *Triticum*: *T. aestivum* (A^uA^uBBDD , 2n=42), сорт Героиня (UA0105703), и *T. durum* (A^uA^uBB , 2n=28), сорт Спадщина (UA0201075). Образцы подрода *Boeoticum* получены из Всероссийского научно-исследовательского института растениеводства им. Н.И.Вавилова, Россия. Сорта мягкой и твёрдой пшеницы предоставлены оригинаторами — лабораторией селекции яровой пшеницы Института растениеводства им. В.Я.Юрьева УААН, Украина.

Нами были проведены прямые, обратные скрещивания и беккроссы. Беккроссы проводили сортами мягкой и твёрдой пшениц селекции Института им. В.Я.Юрьева: Героиня и Спадщина соответственно.

Гибридизацию проводили согласно общепринятой методике (Коновалов и др., 1987). Выбирали хорошо развитые колосья материнской формы, только что вышедшие из влагалища листа, с ещё зелёными пыльниками и нераспушившимся рыльцами. Удаляли верхние, хуже развитые колоски, перерезая колосовой стержень ножницами, а затем нижние колоски, обламывая их пинцетом. Оставляли колоски в средней части колоса: в зависимости от его размера — от 6 до 12 колосков. В этих колосках пинцетом вырывали верхние цветки, оставляя только наиболее развитый первый и второй цветки. Цветковые чешуи подрезали на 1/3, при этом удалялись и ости. Затем из цветков удалялись и пыльники. Закончив кастрацию, колос изолировали. На изоляторе отмечали название материнской формы и дату кастрации.

Опыление проводили, когда рыльца распушились и готовы к прорастанию пыльцы. При опылении использовали методы принудительный и «твелл». При принудительном опылении собирали пинцетом в пергаментный пакет пыльники из колосьев отцовского сорта, у которых начали цвести единичные цветки, или находящихся накануне цветения. Снимали изолятор с колосьев материнской формы и проводили опыление, захватывая пинцетом из пакета пыльник и вкладывая его в кастрированный цветок. Закончив опыление, вновь надевали изолятор и отмечали дату опыления и название отцовской формы на изоляторе.

При опылении методом «твелл» чешуи при подготовке материнского колоса к кастрации коротко подрезали. В колосе отцовской формы, у которого уже раскрылись один-два цветка, обламывали колосковые и наружные цветковые чешуи. Раскрывая изолятор в верхней части, не

снимая его с колоса, вводили зацветший колос и вращали его над колосом материнской формы так, чтобы осыпать его пыльцой. Изолятор подписывали, как было сказано выше. По каждой комбинации кастрировали, в зависимости от размера колоса, 10–15 колосьев, 100–115 цветков по каждой комбинации.

При последующем изложении прямыми скрещиваниями мы называем комбинации, где материнской формой выступают виды – носители субгенома G, а обратными (реципрокные) – скрещивания, где в качестве материнской формы выступают современные сорта мягкой или твёрдой пшеницы.

Так как изучаемые виды и формы – носители субгенома G колосятся и созревают значительно позже стандартов, сорта мягкой и твёрдой пшениц были высеяны в три срока с промежутком 10 дней.

Условия выращивания растений и погодные условия в период скрещиваний были в целом благоприятными. Вместе с тем, в периоды цветения образцов более поздних по срокам колошения и созревания, а также делянок второго и третьего сроков посева метеорологические условия были менее благоприятными, что отрицательно повлияло на показатели скрещиваемости и всхожести гибридных зерновок в ряде комбинаций. В этом случае для характеристики потенциальной скрещиваемости и всхожести гибридных зерновок принимали во внимание показатель, полученный в более благоприятном году, т.е. более высокий.

Математическую обработку результатов опытов проводили методом дисперсионного анализа (Лакин, 1973). Существенность различий оценивали, сравнивая их с наименее существенной разностью (HCP).

Результаты и обсуждение

Мы условно разделили виды и формы носители субгенома G на две группы: 1) группа Тимофееви, в которую вошли T. timopheevii, T. x timococcum, T. x timococcum, timopheevii — timopheevii

Группа Тимофееви

В оба года изучения одинаково высокий уровень завязываемости гибридных зерен показали комбинации: прямая *Т. х timococcum* с *Т. durum* Спадщина; прямая и обратная *Т. х kiharae* с сортом Спадщина; средний уровень – прямая комбинация *Т. х kiharae* с *Т. aestivum* Героиня; низкий уровень – прямая комбинация *Т. х fungicidum* с *Т. aestivum* и обратная *Т. durum* с *Т. х timococcum*. В остальных комбинациях показатели завязываемости по годам различались.

При прямом скрещивании тетраплоидной пшеницы T. timopheevii (A^bG) с гексаплоидной мягкой Героиня (A^uBD) и тетраплоидной твёрдой Спадщина (A^uB) в 2006 году завязываемость составила свыше 50,0%. Полевая всхожесть гибридных зерновок 2007 г. в комбинациях с твёрдой пшеницей очень высокая — 95,0%, с мягкой низкая — 2,5%. В комбинации Спадщина х T. timopheevii завязываемость в оба года была на 65% ниже, чем в реципрокной; всхожесть в 2008 г. почти вдвое (52,9%), а в 2007 г. на 75% ниже. Гибридные зерновки, завязавшиеся при неблагоприятных условиях 2007 г., не дали всходов.

При скрещивании гексаплоидной формы $T. x timococcum (A^bA^bG)$ с тетраплоидной Спадщина (A^uB) завязываемость гибридных зерновок в оба года была практически одинаковой и несущественно ниже, чем в комбинации T. timopheevii х Спадщина, всхожесть же была высокой — около 90%. В обратной комбинации лишь в 2007 г. завязались единичные зерна, оказавшиеся на 66,7% всхожими (табл. 1). Следовательно, при сравнении реципрокных скрещиваний T. x timococcum с сортом Спадщина проявляется общая закономерность для гибридизации разнохромосомных форм: если форма с большим числом хромосом берется в качестве материнского родителя, а с меньшим — отцовского, то завязываемость будет ниже, а всхожесть выше, чем в реципрокной комбинации (Карпеченко, 1937). С другой стороны, добавление к геному T. timopheevii дополнительного генома A^b обусловило небольшое снижение завязываемости и всхожести гибридных зерновок в прямой комбинации скрещиваний с твёрдой пшеницей; значительное снижение завязываемости и небольшое повышение всхожести в обратной комбинации.

В прямой комбинации гексаплоидной формы T. x kiharae (A^bGD) с мягкой пшеницей завязываемость даже в более благоприятном 2006 г. оказалась существенно — на 82% ниже, чем при скрещивании с твёрдой. То же относится к всхожести (при сравнении высших показателей по годам): в комбинации с мягкой пшеницей (55,3%) она значительно ниже, чем с твердой (91,4%).

Из данных табл. 1 следует, что добавление субгенома D к геному T. timopheevii привело к достоверному ухудшению скрещиваемости с мягкой пшеницей, несмотря на сближение обеих родительских форм по уровню плоидности и появление гомологичного субгенома. В то же время, это изменение в структуре генома ещё меньше повлияло на завязываемость и всхожесть гибридных зерновок в прямых скрещиваниях с твердой пшеницей.

Напротив, АД-217, не имеющий общих субгеномов ни с мягкой, ни с твердой пшеницами, при скрещивании с сортом Героиня показывает завязываемость существенно более высокую, чем все другие изученные формы, — 59,0%, и на 53% превышает *Т. х кіhагае*. При скрещивании АД-217 с твердой пшеницей Спадщина завязываемость (48,8%) на 17% ниже, чем с мягкой. По всхожести гибридных зерен соотношение обратное: у гибридов с мягкой пшеницей она несколько ниже, чем с твердой, — соответственно 40,0% и 50,0%. Реципрокные скрещивания, в которых мягкая и твердая пшеницы — материнские родители, оказываются менее успешными, чем прямые, и картина завязываемости и всхожести прямо противоположная: с твердой пшеницей завязывается больше зерновок, чем с мягкой.

Таблица 1. Завязываемость, всхожесть и фертильность в группе Тимофееви

Родительские формы				Гибридные зерновки				
Ŷ		8		завязываемость, %		всхожесть, %		Пл.*,%
название	геном	название	геном	2006 г.	2007 г.	2007 г.	2008 г.	
T. timopheevii	A^bG	Героиня	A ^u BD	55,7	8,3	2,5	-	0
T. timopheevii	A⁵G	Спадщина	A ^u B	56,6	6,0	95,2	-	0
T. x timococcum	A^bA^bG	Спадщина	A ^u B	45,0	43,3	89,0	90,9	0
T. x kiharae	A ^b GD	Героиня	A ^u BD	27,8	19,4	55,3	33,3	1,0
T. x kiharae	A ^b GD	Спадщина	A ^u B	50,5	50,3	56,8	91,4	1,2
АД-217	A ^b GU	Героиня	A ^u BD	59,0	24,6	17,1	40,0	0
АД-217	A ^b GU	Спадщина	A ^u B	25,7	48,8	50,0	40,0	0
T. x fungicidum	A ^u A ^b BG	Героиня	A ^u BD	2,5	0,5	50,0	-	0
Героиня	A ^u BD	АД-217	A ^b DU	12,3	21,0	40,0	43,8	0
Спадщина	A ^u B	АД-217	A⁵DU	33,1	12,2	38,2	33,3	0
Спадщина	A ^u B	T. timopheevii	A ^b G	19,6	22,8	24,1	52,9	0
Спадщина	A ^u B	T. x timococcum	A^bA^bG	-	1,1	-	66,7	0
HCP _{0,5}			11,2	11,7				

Примечание: Пл.* – плодовитость колосьев F_1 при свободном опылении, %.

Группа Милитине

Авторы вида T. militinae считали его спонтанным мутантом из T. timopheevii (Дорофеев и др., 1979). Вместе с тем, Н.А.Наврузбеков привел убедительные доводы в пользу предположения, что это продукт интрогрессивной гибридизации двух видов: T. timopheevii и T. persicum. Следовательно, геном T. militinae правильнее выражать так: $A^b/A^uG/B$ (Наврузбеков, 1979). Таким образом, этот вид находится в болем тесном, чем T. timopheevii, родстве с видами подрода Triticum, а, следовательно, с мягкой и твердой пшеницами.

По результатам наших опытов (табл. 2), почти во всех осуществленных комбинациях скрещиваний, за исключением тех, где участвует *T. х flaksbergeri*, в оба года исследований получены практически одинаковые показатели завязываемости и довольно близкие — всхожести гибридных зерновок.

Т. militinae в прямой комбинации с мягкой пшеницей Героиня имеет средний показатель завязываемости — около 25%, а в реципрокной близкий к нулю. Полученные в обеих комбинациях гибридные зерновки не дали всходов. Следовательно, Т. militinae генетически несовместима с мягкой пшеницей Героиня. При скрещивании с твёрдой пшеницей, где уровень плоидности родительских форм одинаков, показатель завязываемости в обратной комбинации был невысоким (в 2006 и 2007 гг. соответственно 15,8% и 17,5%), но на 39–54% больше в сравнении с прямой комбинацией. Всхожесть зерновок также значительно выше в обратной комбинации. Таким образом, Т. militinae частично совместима с твердой пшеницей Спадщина.

У *Т. х miguschovae*, который является продуктом добавления к базовому геному *Т. militinae* дополнительного субгенома *D*, показатели завязываемости и всхожести в прямых комбинациях как с мягкой, так и с твердой пшеницами значительно возросли и были почти одинаковыми – на уровне 40–43 %. Однако в обратной комбинации с мягкой пшеницей Героиня гибридных зерновок не получено. В

обратной комбинации с твердой пшеницей завязываемость возросла на 46% по сравнению с *T. militinae*, и уровень всхожести также высокий – свыше 70%.

Скрещивания с гексаплоидным амфидиплоидом Е.Г.Жирова ($A^b/A^uG/BD$), который является аналогом T. x miguschovae, проводили в одном направлении (эта форма использована в качестве материнского родителя). Завязываемость в комбинации с мягкой пшеницей на 60% больше в сравнении с твёрдой, всхожесть также более высокая. По сравнению с T. x miguschovae, у АД Е.Г.Жирова увеличилась скрещиваемость с мягкой пшеницей и значительно, на 52-51 %, уменьшилась – в сравнении с твердой.

Таким образом, в целом добавление к геному *T. militinae* субгенома *D* значительно увеличило завязываемость и всхожесть гибридных зерновок в комбинациях с мягкой и твёрдой пшеницами, по крайней мере, в одном из направлений скрещиваний. В прямых скрещиваниях с мягкой пшеницей это может быть связано с полной или частичной гомологией субгеномов *B* обоих родителей, однако в обратной комбинации Героиня х *T. х miguschovae* это не наблюдается, возможно, из-за влияния цитоплазмы.

Скрещивания сортов мягкой и твердой пшеницы с октаплоидными формами *T. х fungicidum* и *T. х flaksbergeri* не дали положительных результатов. В комбинации *T. х fungicidum* х Героиня завязываемость и всхожесть зерновок низкие (2,5% и 0,5%), а в комбинации *T. х flaksbergeri* х Героиня всходы не получены.

Таблица 2. Завязываемость, всхожесть и фертильность в группе Милитине

Родительские формы				Гибридные зерновки				
P		8		завязываемость, %		всхожесть, %		Пл.*, %
название	геном	название	геном	2006 г.	2007 г.	2007 г.	2008 г.	
T. militinae	$A^b/A^uG/B$	Героиня	A ^u BD	25,1	24,6	0	0	0
Героиня	A ^u BD	T. militinae	A ^b /A ^u G/B	0,6	0,3	0	0	0
Спадщина	$A^{u}B$	T. militinae	$A^b/A^uG/B$	15,8	17,5	50,0	81,3	0
T. militinae	$A^b/A^uG/B$	Спадщина	$A^{u}B$	9,7	8,0	14,3	25,0	0
T. x miguschovae	A ^b /A ^u G/B D	Героиня	A ^u BD	42,8	39,6	90,3	100,0	2,0
Героиня	AuBD	T. x miguschovae	A ^b /A ^u G/B D	0	0	-	-	0
Спадщина	A ^u B	T. x miguschovae	A ^b /A ^u G/B D	29,5	32,1	73,0	78,1	1,0
T. x miguschovae	A ^b /A ^u G/B D	Спадщина	A ^u B	42,8	43,2	91,8	92,6	3,0
АД Е.Г.Жирова	A ^b /A ^u G/B D	Героиня	A ^u BD	51,3	52,0	97,5	92,0	2,0
АД Е.Г.Жирова	A ^b /A ^u G/B D	Спадщина	$A^{u}B$	20,4	21,0	25,0	85,7	1,0
T. x flaksbergeri	A^b/A^u $A^b/A^uG/BD$	Героиня	A ^u BD	15,6	-	0	-	0
HCP _{0,5}				10,8	9,9			

Примечание: Пл.* – плодовитость колосьев F_1 при свободном опылении, %.

Плодовитость гибридных растений

Учитывая основную цель работы – получение плодовитых интрогрессивных форм, проводили оценку завязываемости зерновок при возвратных скрещиваниях в поколениях F_1 и Fb_1 .

Таблица 3. Завязываемость зерновок у гибридных растений при беккроссах

			F ₁	Fb ₁		
Ŷ	ð	завязываемость, %	фертильность при свободном опылении, %	всхожесть, %	завязываемость, %	фертильность при свободном опылении, %
T. timopheevii × Героиня	Героиня	13,3	-	80,0	11,2	-
T. x timococcum x Героиня	Героиня	16,0	-	90,0	14,0	-
<i>T. х kiharae</i> х Героиня	Героиня	8,4	-	92,0	45,2	-
АД-217 × Героиня	Героиня	6,2	-	25,0	3,2	-
Героиня × АД-217	Героиня	45,8	-	18,2	5,3	-
T. x miguschovae × Героиня	Героиня	34,8	22,0	96,0	21,7	18,3
АД Е.Г. Жирова × Героиня	Героиня	21,4	39,0	95,0	47,1	21,0
<i>T. timopheevii</i> × Спадщина	Спадщина	7,9	-	80,0	22,2	-
<i>T. х kiharae</i> × Спадщина	Спадщина	4,0	-	40,0	-	-
T. x timococcum x Спадщина	Спадщина	5,8	-	85,0	6,5	-
Спадщина × <i>T. timopheevii</i>	Спадщина	2,2	-	80,0	6,6	-
Спадщина × <i>T. militinae</i>	Спадщина	6,8	-	30,0	-	-
Спадщина х T. х miguschovae	Спадщина	25,0	74,0	90,0	30,0	67,0

Завязываемость зерновок у растений F_1 при беккроссе с твёрдой пшеницей значительно меньше в сравнении с мягкой. Очевидно, у твёрдой пшеницы Спадщина еще меньшая совместимость с видами подрода *Boeoticum*: при прямых скрещиваниях (АД-217 × Спадщина) × Спадщина – 0%, *T. timopheevii* × Спадщина – 7,9%; при обратных от 25% у гибрида (Спадщина × *T. miguschovae*) × Спадщина до 2,2% в комбинации (Спадщина × *T. timopheevii*) × Спадщина. Однако завязавшиеся зерновки имеют высокую всхожесть, исключение (T. x kiharae × C Спадщина) × Спадщина – 40,0%.

Пыльники растений Fb_1 у комбинаций с участием T. x miguschovae и АД Е.Г.Жирова частично фертильные. При свободном опылении, в сравнении с беккроссами, показатели завязываемости в скрещивании, где гибрид с T. x miguschovae является материнской формой, уменьшились на 37% при опылении мягкой пшеницей и на 66% увеличились при опылении твёрдой, а у гибридов с участием АД Е.Г.Жирова увеличились на 45%.

При опылении пшеничным родителем растений Fb_1 закономерность повторяется: наибольшая завязываемость в комбинациях с участием амфидиплоидов, содержащих геном D: [(T. x miguschovae

 \times Героиня] \times Героиня -21,7%, [(АД Е.Г.Жирова \times Героиня) \times Героиня -47,1% и [($T. x \ kiharae \times$ Героиня) \times Героиня] \times Героиня -45,2%. В других комбинациях завязываемость составляла от 3,2% [(АД-217 \times Героиня) \times Героиня] \times Героиня до 14,0% [($T. x \ timococcum \times$ Героиня) \times Героиня] \times Героиня. Низкий показатель завязываемости сохраняется при повторных беккроссах в комбинациях с участием $T. x \ timococcum$ и АД-217 (прямые комбинации), что, вероятно, связано с высоким уровнем несбалансированности хромосом в женских гаметах. В комбинациях с участием $T. x \ kiharae$ показатель завязываемости возрастает на 81%, а с АД Е.Г.Жирова - на 55%. У комбинации (Героиня \times АД-217) \times Героиня завязываемость снижается на 88%.

Лучшие показатели завязываемости получены при беккроссах твёрдой пшеницей в комбинации [(Спадщина \times T. x miguschovae) \times Спадщина] \times Спадщина - 30,0%, завязываемость в других комбинациях составляла от 0% - [(АД-217 \times Спадщина) \times Спадщина] \times Спадщина и [(T. x miguschovae \times Спадщина) \times Спадщина] \times Спадщина у Спадщина \times Спадщина \times Спадщина. Лишь в комбинации [(T. timopheevii \times Спадщина) \times Спадщина] \times Спадщина значительно, на 65%, возрос показатель завязываемости, в других комбинациях он увеличился, но незначительно. В комбинациях (T. x kiharae \times Спадщина) \times Спадщина и (Спадщина \times T. militinae) \times Спадщина беккроссы не проводили, так как у растений депрессивный характер развития (низкие всхожесть и жизнеспособность, замедленное развитие и T..). При свободном опылении показатели завязываемости незначительно снижаются. Вероятно, имеет место женская стерильность, так как во время цветения гибридных растений в воздухе достаточное количество фертильной пыльцы.

Таблица 4. Характеристика гибридов ранних поколений и беккроссов по плодовитости

Комбинация	Индекс озернённости, зерновок на 1 колосок	% растений с индексом озернённости 1 и более		
F ₂ (АД Е.Г.Жирова × Героиня) × Героиня	0,3	0		
F ₂ (Спадщина × <i>T. x migucshovae</i>) × Спадщина	2,0	100		
F₂ Fb₁ <i>T. x migucshovae</i> × Героиня	0,4	30,0		
F ₂ Fb ₁ (<i>T. x migucshovae</i> × Спадщина) × Спадщина	0,3	0		
F ₃ Спадщина × <i>T. x migucshovae</i>	2,1	85,7		
F ₃ Героиня × АД Е.Г.Жирова	2,5	100		
F ₃ <i>T. x migucshovae</i> × Героиня	0,3	12,5		
F ₃ АД Е.Г.Жирова × Героиня	0,9	47,4		
HCP _{0,5}	0,04			

Таким образом, интрогрессию генов из субгенома *G* в геномы мягкой и твёрдой пшеницы с наибольшей вероятностью можно осуществить, используя амфидиплоиды *T. х miguschovae,* АД Е.Г.Жирова и *T. х kiharae*.

Выводы

Виды и формы – носители субгенома *G* трудно скрещиваются с сортом мягкой пшеницы Героиня и твёрдой – Спадщина. Успех скрещиваний выше, когда материнской формой являются формы – носители субгенома *G*.

Показатели завязываемости в первичных скрещиваниях значительно выше, чем при беккроссах. Добавление к базовому геному T. timopheevii дополнительных геномов A^b , D и U в целом уменьшает завязываемость. Однако зерновки, полученные при беккроссах, имеют хорошую всхожесть, за исключением реципрокных комбинаций T. $militinae \times T$

Скрещивания сортов мягкой и твёрдой пшеницы с октаплоидными формами *T. х fungicidum* и *T. х flaksbergeri* не дали положительных результатов.

При бекроссах растений F_1 наибольшая завязываемость получена в комбинации (Спадщина \times *T. х miguschovae*) \times Спадщина — 74%; в потомстве плодовитость снижается. При беккроссах в комбинации (*T. х miguschovae* \times Героиня) \times Героиня завязываемость уменьшается, тогда как в комбинациях (Спадщина \times *T. х miguschovae*) \times Спадщина и (АД Е.Г.Жирова \times Героиня) \times Героиня увеличивается.

В потомстве свободного опыления гибридных растений с участием *Т. х kiharae* зерновки не получены. При беккроссировании показатель завязываемости увеличивается на 81%.

Для осуществления интрогрессии генов из субгенома G в геномы мягкой и твёрдой пшеницы целесообразно использовать амфидиплоиды T. x miguschovae, AD E. Γ .X wmiguschovae, AD E.Dwmiguschovae, ADwmiguschovae, ADw

Список литературы

<u>Генетика культурных растений</u>: Зерновые культуры / Под ред. В.Д.Кобылянского и Т.С.Фадеевой. – Л.: Агропромиздат, 1986. – 264с.

<u>Гончаров Н.П.</u> Сравнительная генетика пшениц и их сородичей. – Новосибирск: Сибирское университетское издательство, 2002. – 252с.

<u>Дорофеев В. Ф., Филатенко А. А., Мигушова Э. Ф. и др.</u> Культурная флора СССР. – Л.: Колос, 1979. – Т.1. – 347с.

<u>Карпеченко Г.Д.</u> Увеличение скрещиваемости вида путём увеличения числа хромосом // Тр. по прикл. ботанике, генетике и селекции. – Л., 1937. – Т.2, вып.6. – С. 73–79.

<u>Коновалов Ю.Б., Березкин А.Н., Долгодворова Л. И. и др.</u> Практикум по селекции и семеноводству полевых культур. – М.: Агропромиздат, 1987. – 367с.

Лакин Г.Ф. Биометрия. – М.: Высшая школа, 1973. – 343с.

<u>Наврузбеков Н.А.</u> Наследование прочности колосового стержня и вымолачиваемости при межвидовой гибридизации пшеницы. Автореф. дисс. ... канд. биол. наук / 03.00.15. – Л., 1979. – 24с. <u>Цитогенетика пшеницы</u> и ее гибридов / Под ред. П.М.Жуковского, В.В.Хвостова. – М.: Наука, 1971. –

<u>Kihara H.</u> Interspecific relationship in Triticum and Aegilops // Seiken Ziho. – 1963. – Vol.15. – P. 1–12. <u>Panayotov J., Gotsov T.</u> Interactions between Ae. cytoplasms and Triticum genomes and evolution of Aegilops // Cereal Research Communications. – 1976. – Vol.4, №3. – P. 297–306.

Представлено: В.М.Поповим

Рекомендовано до друку: В.Ю.Страшнюком

© О.В.Твердохліб, 2009